Search results for " *-codimension"

showing 7 items of 7 documents

Polynomial growth and identities of superalgebras and star-algebras

2009

Abstract We study associative algebras with 1 endowed with an automorphism or antiautomorphism φ of order 2, i.e., superalgebras and algebras with involution. For any fixed k ≥ 1 , we construct associative φ -algebras whose φ -codimension sequence is given asymptotically by a polynomial of degree k whose leading coefficient is the largest or smallest possible.

Discrete mathematicsInvolution (mathematics)Settore MAT/02 - AlgebraPure mathematicsAlgebra and Number TheoryCodimensionAutomorphismAssociative property\varphi$-identity $T^\varphi$-ideal $\varphi$-codimensions growthMathematicsJournal of Pure and Applied Algebra
researchProduct

Algebras with involution with linear codimension growth

2006

AbstractWe study the ∗-varieties of associative algebras with involution over a field of characteristic zero which are generated by a finite-dimensional algebra. In this setting we give a list of algebras classifying all such ∗-varieties whose sequence of ∗-codimensions is linearly bounded. Moreover, we exhibit a finite list of algebras to be excluded from the ∗-varieties with such property. As a consequence, we find all possible linearly bounded ∗-codimension sequences.

Discrete mathematicsPure mathematicsJordan algebraAlgebra and Number TheoryNon-associative algebraSubalgebraQuadratic algebra∗-CodimensionsSettore MAT/02 - AlgebraInterior algebra*-polynomial identity T*-ideal *-codimensions.∗-Polynomial identityT∗-idealDivision algebraAlgebra representationNest algebraMathematics
researchProduct

Minimal star-varieties of polynomial growth and bounded colength

2018

Abstract Let V be a variety of associative algebras with involution ⁎ over a field F of characteristic zero. Giambruno and Mishchenko proved in [6] that the ⁎-codimension sequence of V is polynomially bounded if and only if V does not contain the commutative algebra D = F ⊕ F , endowed with the exchange involution, and M , a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices , endowed with the reflection involution. As a consequence the algebras D and M generate the only varieties of almost polynomial growth. In [20] the authors completely classify all subvarieties and all minimal subvarieties of the varieties var ⁎ ( D ) and var ⁎ ( M ) . In this paper we e…

Involution (mathematics)Algebra and Number Theory010102 general mathematicsSubalgebraTriangular matrix010103 numerical & computational mathematics01 natural sciencesCombinatoricsSettore MAT/02 - Algebra*-colength *-codimension *-cocharacterBounded function0101 mathematicsCommutative algebraAssociative propertyMathematicsJournal of Pure and Applied Algebra
researchProduct

Polynomial growth and star-varieties

2016

Abstract Let V be a variety of associative algebras with involution over a field F of characteristic zero and let c n ⁎ ( V ) , n = 1 , 2 , … , be its ⁎-codimension sequence. Such a sequence is polynomially bounded if and only if V does not contain the commutative algebra F ⊕ F , endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices. Such algebras generate the only varieties of ⁎-algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety is polynomially bounded. In this paper we completely classify all subvarieties of the ⁎-varieties of almost polynomial growth by gi…

Involution (mathematics)Algebra and Number TheorySubvariety010102 general mathematicsSubalgebraStar-codimensionTriangular matrixStar-polynomial identitie010103 numerical & computational mathematicsGrowth01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsCommutative algebraAssociative propertyMathematics
researchProduct

On Codimensions of Algebras with Involution

2020

Let A be an associative algebra with involution ∗ over a field F of characteristic zero. One associates to A, in a natural way, a numerical sequence \(c^{\ast }_n(A),\)n = 1, 2, …, called the sequence of ∗-codimensions of A which is the main tool for the quantitative investigation of the polynomial identities satisfied by A. In this paper we focus our attention on \(c^{\ast }_n(A),\)n = 1, 2, …, by presenting some recent results about it.

Polynomial (hyperelastic model)CombinatoricsSequenceSettore MAT/02 - Algebra*-identitiesAssociative algebraZero (complex analysis)Involution (philosophy)Field (mathematics)*-codimensionsGrowthMathematics
researchProduct

Polynomial codimension growth of graded algebras

2009

We study associative $G$-graded algebras with 1 of polynomial $G$-codimension growth, where $G$ is a finite group. For any fixed $k\geq 1,$ we construct associative $G$-graded algebras of upper triangular matrices whose $G$-codimension sequence is given asymptotically by a polynomial of degree $k$ whose leading coefficient is the largest or smallest possible.

Settore MAT/02 - AlgebraGraded algebra graded identity G-codimensionsGroups, Rings and Group Rings
researchProduct

Supervarieties and *-varieties of algebras of polynomial growth

2008

We study the sequence of supercodimensions and *-codimensions of unitary algebras.

supercodimensions *-codimensions
researchProduct